Exercise 1.49

For the vectors $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{D}}$ in Fig. E1.28, (a) find the magnitude and direction of the vector product $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{D}} ;(\mathrm{b})$ find the magnitude and direction of $\overrightarrow{\boldsymbol{D}} \times \overrightarrow{\boldsymbol{A}}$.

Solution

Figure E1.28

The vectors in Fig. E1.28 were written in Exercise 1.41.

$$
\begin{aligned}
& \mathbf{A}=(-8.00 \mathrm{~m}) \hat{\boldsymbol{j}} \\
& \mathbf{B}=\left(15.0 \sin 30^{\circ} \mathrm{m}\right) \hat{\boldsymbol{i}}+\left(15.0 \cos 30^{\circ} \mathrm{m}\right) \hat{\boldsymbol{j}} \\
& \mathbf{C}=\left(-12.0 \cos 25^{\circ} \mathrm{m}\right) \hat{\boldsymbol{i}}+\left(-12.0 \sin 25^{\circ} \mathrm{m}\right) \hat{\boldsymbol{j}} \\
& \mathbf{D}=\left(-10.0 \sin 53^{\circ} \mathrm{m}\right) \hat{\boldsymbol{i}}+\left(10.0 \cos 53^{\circ} \mathrm{m}\right) \hat{\boldsymbol{j}}
\end{aligned}
$$

The vector (cross) product is obtained by evaluating a 3×3 determinant.

$$
\begin{aligned}
& \mathbf{A} \times \mathbf{D}=\left|\begin{array}{ccc}
\hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\
A_{x} & A_{y} & A_{z} \\
D_{x} & D_{y} & D_{z}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
\hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\
0 & -8.00 \mathrm{~m} & 0 \\
-10.0 \sin 53^{\circ} \mathrm{m} & 10.0 \cos 53^{\circ} \mathrm{m} & 0
\end{array}\right| \\
& =\left|\begin{array}{cc}
-8.00 \mathrm{~m} & 0 \\
10.0 \cos 53^{\circ} \mathrm{m} & 0
\end{array}\right| \hat{\boldsymbol{i}}-\left|\begin{array}{cc}
0 & 0 \\
-10.0 \sin 53^{\circ} \mathrm{m} & 0
\end{array}\right| \hat{\boldsymbol{j}}+\left|\begin{array}{cc}
0 & -8.00 \mathrm{~m} \\
-10.0 \sin 53^{\circ} \mathrm{m} & 10.0 \cos 53^{\circ} \mathrm{m}
\end{array}\right| \hat{\boldsymbol{k}} \\
& =\left[(-8.00 \mathrm{~m})(0)-(0)\left(10.0 \cos 53^{\circ} \mathrm{m}\right)\right] \hat{\boldsymbol{i}}-\left[(0)(0)-(0)\left(-10.0 \sin 53^{\circ} \mathrm{m}\right)\right] \hat{\boldsymbol{j}} \\
& +\left[(0)\left(10.0 \cos 53^{\circ} \mathrm{m}\right)-(-8.00 \mathrm{~m})\left(-10.0 \sin 53^{\circ} \mathrm{m}\right)\right] \hat{\boldsymbol{k}} \\
& \approx 0 \hat{\boldsymbol{i}}-0 \hat{\boldsymbol{j}}+\left(-63.9 \mathrm{~m}^{2}\right) \hat{\boldsymbol{k}} \\
& \approx-63.9 \mathrm{~m}^{2} \hat{\boldsymbol{k}}
\end{aligned}
$$

Also,

$$
\begin{aligned}
\mathbf{D} \times \mathbf{A} & =-(\mathbf{A} \times \mathbf{D}) \\
& =-\left(-63.9 \mathrm{~m}^{2} \hat{\boldsymbol{k}}\right) \\
& =63.9 \mathrm{~m}^{2} \hat{\boldsymbol{k}} .
\end{aligned}
$$

The magnitudes of $\mathbf{A} \times \mathbf{D}$ and $\mathbf{D} \times \mathbf{A}$ are both about $63.9 \mathrm{~m}^{2}$, and they point in the negative and positive z-directions, respectively.

